RETOUR D'EXPÉRIENCE SUR LE DÉPLOIEMENT AD-HOC DE SOLUTIONS LORA POUR DES APPLICATIONS RURALES

Journée Systèmes Embarqués et Objets Communicants (SEOC) 1 avril 2019, CNAM, Paris

Prof. Congduc Pham
http://www.univ-pau.fr/~cpham
Université de Pau, France

WAZIUP Open IoT and Big data platform for Africans, by Africans

Exploit advanced research capitalizing on IoT and Big data state-of-the art findings

Waziu

waziup.community@create-net.org

Low-cost IoT

http://blog.atmel.com/2015/12/16/rewind-50-of-the-best-boards-from-2015/

http://blog.atmel.com/2015/04/09/25-devboards-to-help-you-get-started-on-your-

next-iot-project/

ATmega328P 3.3v 8bit, 8MHz, 32K flash, 2K RAM

Theairboard

LinkIt Smart7688 duo

Adafruit Feather

Expressif ESP32

STM32 Nucleo-32

Heltec ESP32 + OLED

Sparkfun ESP32 **Thing**

Tessel

Tinyduino

Reduce development cost & time

Low-power for longer lifetime!

wakes-up every 10min, take a measure and send to GW

5μA in deep sleep mode, about 40mA when active and sending!

Cost of data encryption

■ AES128

☐ Lightweight Stream Cipher (LSC)

Generic sensing IoT device v.s. Highly specialized

- Build low-cost, low-power, long-range enabled generic platform
- Methodology for low-cost platform design
- Technology transfers to user communities, economic actors, stakeholders,...

HATCHERY EXPERIMENT, BURKINA FASO

- ☐ Laboratory named Laboratoire d'Études des Ressources Naturelles et des Sciences de l'Environnement (LERNSE)
- NAZI BONI University in a small village of Bobo-Dioulasso city
- Sensors are placed in a hatchery and the box is placed outside of the building

LOW-COST BUOY FOR FISH FARMING

In Sub-Saharian Africa, the volume of natural captured fish doesn't meet half of the population demand

Increasing production of aquaculture will help reduce the quantity of imported fishes in Africa $\,$

The aim is to monitor in real-time different parameters to control water quality and prevent some diseases that could affect fish in order to improve the quality and quantity of the production

KUMAH FARM, GHANA

- ☐ The Kwame Nkrumah University of Science and Technology (KNUST)
- ☐ Located on the campus of the Kwame Nkrumah University of Science and Technology in Kumasi, Ghana.
- ☐ The farm comprises 30 constructed fish ponds, a farm house, a recirculating aquaculture system (RAS) laboratory and store houses.

SANAR FARM, SENEGAL

- ☐ Farm located at less than 2 km from UGB.
- One pond is dedicated for the Waziup application: 50x25m, average depth of 0.5 meters, populated by 4000 individuals of saltwater tilapia.
- ☐ The basin is irrigated via a water supply system fed by a river in proximity.
- ☐ The water in the pond is changed every 10 days

Monitoring soil moisture and other parameters to provide insightful recommendations and notifications to farmers, and advisors

From Unparallel for WAZIUP

100% open-source code templates

LowCostLoRaGw github has latest general distribution:

https://github.com/CongducPham/LowCostLoRaGw

Many examples using various temp/hum sensors

https://github.com/CongducPham/LowCostLoRaGw/tree/master/Arduino

From full Do-It-Yourself approach

...to simple PCB for easy integration

Open, versatile IoT gateway

Raspberry PI: lots of libraries, lots of software, lots of hardware, lots of shields,...

□ ThingSpeak

((v)) mosouitto

HIVEMQ

Deployment in rural areas no Internet 😊

- deploying IoT in very isolated areas...
- ... where internet and electricity are not stable!

Autonomous gateway

Link to a short demo video of the collar web interface: https://youtu.be/meFDav1SLPI

City environment high building=large coverage

LoRaWAN gateway on top of DSP building by F. Ferrero (U. Nice),
 U. Danang and DSP team. Congrats Fabien!

Deployment in rural areas no high building 🗵

- Expected range: about 2-4kms
- □ 1-hop connectivity to gateway is difficult to achieve in real-world, remote, rural scenarios

2-hop long-range approach

smart, transparent relay node should be able to be inserted at anytime between end-devices and gateway to increase range

2 approaches

- Use short Channel Activity Detection (CAD) to dynamically detect uplink messages (draft from Semtech)
- ☐ Use observation phase to determine device's schedule

LoRa's Channel Activity Detection

- CAD reliability decreases as distance increases
 - A CAD returning false does not mean that there is no activity!
- However, during a long transmission (i.e. several seconds) there is usually at least one CAD returning true
 But ad-hoc mechanism is needed

Observation phase approach

- On-the-fly learning of incoming traffic from enddevices: observation phase
- Just-in-time wake up in data forwarding phase
- □ Continuous re-synchronization→only 500ms of guard time is sufficient
- No additional hardware → sensor nodes can be recycled as relay
- Advanced features
 - Insertion of new isolated end-devices
 - Handling downlink messages
 - Similarity detection between devices

Scaling up!

Feb 2016 - 2019

WAZIUP has been developing the open, low-cost IoT technologies/frameworks and use-cases

WAZIHUB will focus on dissemination, community building and entrepreneurship

